Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.630
1.
BMC Biotechnol ; 24(1): 30, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720310

BACKGROUND: Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminescence kit and employed chemiluminescence to detect the tissue plasminogen activator inhibitor complex (t-PAIC), thrombin-antithrombin III complex (TAT), plasmin-α2-plasmin inhibitor complex (PIC) and thrombomodulin (TM), combined with D-dimer and fibrin degradation products (FDP), to investigate their diagnostic potential for venous thrombosis in gastric cancer patients. The study assessed variations in six indicators among gastric cancer patients at different stages. RESULTS: The t-PAIC reagent showed LOD is 1.2 ng/mL and a linear factor R greater than 0.99. The reagents demonstrated accurate results, with all accuracy deviations being within 5%. The intra-batch and inter-batch CVs for the t-PAIC reagent were both within 8%. The correlation coefficient R between this method and Sysmex was 0.979. Gastric cancer patients exhibited elevated levels of TAT, PIC, TM, D-D, FDP compared to the healthy population, while no significant difference was observed in t-PAIC. In the staging of gastric cancer, patients in III-IV stages exhibit higher levels of the six markers compared to those in I-II stages. The ROC curve indicates an enhancement in sensitivity and specificity of the combined diagnosis of four or six indicators. CONCLUSION: Our chemiluminescence assay performs comparably to Sysmex's method and at a reduced cost. The use of multiple markers, including t-PAIC, TM, TAT, PIC, D-D, and FDP, is superior to the use of single markers for diagnosing VTE in patients with malignant tumors. Gastric cancer patients should be screened for the six markers to facilitate proactive prophylaxis, determine the most appropriate treatment timing, ameliorate their prognosis, decrease the occurrence of venous thrombosis and mortality, and extend their survival.


Luminescent Measurements , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Male , Middle Aged , Luminescent Measurements/methods , Female , Aged , Antithrombin III/metabolism , Antithrombin III/analysis , Thrombomodulin/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , alpha-2-Antiplasmin/metabolism , alpha-2-Antiplasmin/analysis , Adult , Fibrinolysin/metabolism , Fibrinolysin/analysis , Venous Thromboembolism/diagnosis , Venous Thromboembolism/blood , Peptide Hydrolases
2.
Luminescence ; 39(5): e4775, 2024 May.
Article En | MEDLINE | ID: mdl-38745525

A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.


Luminescent Measurements , Luminol , Smartphone , Luminescent Measurements/methods , Luminescent Measurements/instrumentation , Luminol/chemistry , Explosive Agents/analysis , Luminescence , Limit of Detection
3.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698549

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Luciferases , Luminescent Measurements , Potassium , Potassium/metabolism , Potassium/chemistry , Animals , Luminescent Measurements/methods , Mice , Luciferases/chemistry , Luciferases/metabolism , Humans , Protein Engineering , Luminescent Agents/chemistry , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism
4.
J Clin Microbiol ; 62(5): e0013924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38597655

We compared the performance of a new modified two-tier testing (MTTT) platform, the Diasorin Liaison chemiluminescent immunoassay (CLIA), to the Zeus enzyme-linked immunoassay (ELISA) MTTT and to Zeus ELISA/Viramed immunoblot standard two-tier testing (STTT) algorithm. Of 537 samples included in this study, 91 (16.9%) were positive or equivocal by one or more screening tests. Among these 91 samples, only 57 samples were concordant positive by first-tier screening tests, and only 19 of 57 were concordant by the three second-tier methods. For IgM results, positive percent agreement (PPA) was 68.1% for Diasorin versus 89.4% for Zeus compared to immunoblot. By contrast, the PPA for IgG for both Diasorin and Zeus was 100%. Using a 2-out-of-3 consensus reference standard, the PPAs for IgM were 75.6%, 97.8%, and 95.6% for Diasorin, Zeus, and immunoblot, respectively. The difference between Zeus MTTT and Diasorin MTTT for IgM detection was significant (P = 0.0094). PPA for both Diasorin and Zeus MTTT IgG assays was 100% but only 65.9% for immunoblot STTT (P = 0.0005). In total, second-tier positive IgM and/or IgG results were reported for 57 samples by Diasorin MTTT, 63 by Zeus MTTT, and 54 by Viramed STTT. While Diasorin CLIA MTTT had a much more rapid, automated, and efficient workflow, Diasorin MTTT was less sensitive for the detection of IgM than Zeus MTTT and STTT including in 5 early Lyme cases that were IgM negative but IgG positive. IMPORTANCE: The laboratory diagnosis of Lyme disease relies upon the detection of antibodies to Borrelia species. Standard two tier testing (STTT) methods rely upon immunoblots which have clinical and technical limitations. Modified two-tier testing (MTTT) methods have recently become available and are being widely adopted. There are limited independent data available assessing the performance of MTTT and STTT methods.


Algorithms , Antibodies, Bacterial , Immunoglobulin G , Immunoglobulin M , Lyme Disease , Sensitivity and Specificity , Serologic Tests , Humans , Lyme Disease/diagnosis , Lyme Disease/immunology , Lyme Disease/blood , Immunoglobulin M/blood , Immunoglobulin G/blood , Serologic Tests/methods , Serologic Tests/standards , Antibodies, Bacterial/blood , Luminescent Measurements/methods , Immunoblotting/methods
5.
Anal Chem ; 96(18): 7311-7320, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656817

Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/µL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.


Coordination Complexes , Electrochemical Techniques , Herpesvirus 6, Human , Iridium , Luminescent Measurements , Methane/analogs & derivatives , Iridium/chemistry , Humans , Immunoassay/methods , Ligands , Coordination Complexes/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Methane/chemistry , Heterocyclic Compounds/chemistry
6.
Anal Chem ; 96(18): 7231-7239, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656982

Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.


Electrochemical Techniques , Luminescent Measurements , Nanotubes , Quantum Dots , Quantum Dots/chemistry , Humans , Electrochemical Techniques/methods , Nanotubes/chemistry , Luminescent Measurements/methods , HeLa Cells , Cell Membrane/metabolism , Cell Membrane/chemistry , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Carbon/chemistry
7.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679471

The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.


Green Fluorescent Proteins , Protein Binding , Humans , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Receptors, LH/metabolism , Receptors, LH/genetics , Luciferases/metabolism , Luciferases/genetics , Animals , Bioluminescence Resonance Energy Transfer Techniques/methods , Chorionic Gonadotropin/metabolism , HEK293 Cells , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Energy Transfer , Glycoproteins/metabolism , Luminescent Measurements/methods
8.
Biosens Bioelectron ; 256: 116236, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38608494

Au nano-clusters (Au NCs) were promising electrochemiluminescence (ECL) nano-materials. However, the small size of Au NCs presented a challenge in terms of their immobilization during the construction of an ECL biosensing platform. This limitation significantly hindered the wider application of Au NCs in the ECL field. In this work, we successfully used the reducibility of Ti3C2 to fabricate in situ a self-enhanced nano-probe Ti3C2-TiO2-Au NCs. The strategy of in situ generation not only improved the immobilization of Au NCs on the probe but also eliminated the requirement of adding reducing agents during preparation. In addition, in situ generated TiO2 could serve as a co-reaction accelerator, shortening the electron transfer distance between S2O82- and Au NCs, thereby improving the utilization of intermediates and enhancing the ECL response of Au NCs. The constructed ECL sensing platform could achieve sensitive detection of polynucleotide kinase (PNK). At the same time, the 5'-end phosphate group of DNA phosphorylation could chelate with a large amount of Ti on the surface of Ti3C2, thereby achieving the goal of specific detection of PNK. The sensor based on self-enhanced ECL probes had a broad dynamic range spanning for PNK detection from 10.0 to 1.0 × 107 µU mL-1, with a limit of detection of 1.6 µU mL-1. Moreover, the ECL sensor showed satisfactory detection performance in HeLa cell lysate and serum. This study not only provided insights for addressing the issue of ECL luminescence efficiency in Au NCs but also presented novel concepts for ECL self-enhancement strategies.


Biosensing Techniques , Gold , Limit of Detection , Luminescent Measurements , Polynucleotide 5'-Hydroxyl-Kinase , Titanium , Titanium/chemistry , Biosensing Techniques/methods , Humans , Luminescent Measurements/methods , Gold/chemistry , Polynucleotide 5'-Hydroxyl-Kinase/analysis , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Luminescent Agents/chemistry
9.
Anal Methods ; 16(16): 2556-2568, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38592494

A novel luminescence-based analytical methodology was established employing a europium(III) complex with 3-allyl-2-hydroxybenzohydrazide (HAZ) as the coordinating ligand for the quantification of gemifloxacin mesylate (GMF) in pharmaceutical preparations and human plasma samples spiked with the compound. The stoichiometry of the europium complex with HAZ was determined via the Job plot and exhibited a metal-to-ligand ratio of 1 : 2. The analytical procedure relies on a rapid and significant enhancement of luminescence by the Eu(AZ)2 complex when it interacts with gemifloxacin mesylate, which allowed for the rapid detection of 96 samples within approximately 2 minutes. The thermodynamic parameters of the complexation of GMF with Eu(AZ)2 were evaluated and showed that the complexation of GMF was spontaneous with a negative ΔG. The binding constant K was 4.27 × 105 L mol-1 and DFT calculations supported GMF binding and the formation of Eu(AZ)2-GMF without further ligand exchange. The calibration graph for the luminescence quantitation of GMF was linear over a wide concentration range of 0.11-16 µg mL-1 (2.26 × 10-7 to 3.30 × 10-5 mol L-1), with a limit of quantification (LOQ) of 110 ng mL-1 (230 nmol L-1) and a detection limit (LOD) of 40 ng mL-1 (82 nmol L-1). The proposed method showed good accuracy with an average recovery of 99% with relative standard deviations of less than 5% in spiking experiments, even in complex pharmaceutical dosage forms such as tablets and in human blood plasma. Herein, the ability of the suppression of the luminescence background by using the long lag times of the lanthanide probe in a time-resolved detection scheme provided reliable and precise results, which suggests its potential for use in further real or patient samples.


Europium , Gemifloxacin , Humans , Gemifloxacin/chemistry , Gemifloxacin/blood , Europium/chemistry , Luminescent Measurements/methods , Limit of Detection , Coordination Complexes/chemistry , Coordination Complexes/blood , Lanthanoid Series Elements/chemistry , Naphthyridines/blood , Naphthyridines/chemistry
10.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38563766

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Electrochemical Techniques , Luminescent Measurements , Luminescent Measurements/methods , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Electrodes , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Limit of Detection , Blood Glucose/analysis , Wireless Technology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Luminol/chemistry
11.
Comput Biol Med ; 174: 108406, 2024 May.
Article En | MEDLINE | ID: mdl-38603898

This study aims to extend earlier Krogh Cylinder Models of an oxygen profile by considering axial diffusion and analytically solving Fick's Law Partial Differential Equation with novel boundary conditions via the separation of variables. We next prospectively collected a total of 20 animals, which were randomly assigned to receive either fresh or two-week-old stored red blood cell (RBC) transfusions and PQM oxygen data were measured acutely (90 min) or chronically (24 h). Transfusion effects were evaluated in vivo using intravital microscopy of the dorsal skinfold window chamber in Golden Syrian Hamsters. Hamsters were initially hemorrhaged by 50% of total blood volume and resuscitated 1-h post hemorrhage. PQM data were subsequently collected and fit the derived 2D Krogh cylinder model. Systemic hemodynamics (mean arterial pressure, heart rate) were similar in both pre and post-transfusion with either stored or fresh cells. Transfusion with stored cells was found to impair axial and radial oxygen gradients as quantified by our model and consistent with previous studies. Specifically, we observed a statistically significant decrease in the arteriolar tissue radial oxygen gradient after transfusion with stored RBCs at 24 h compared with fresh RBCs (0.33 ± 0.17 mmHg µ m-1 vs, 0.14 ± 0.12 mmHg µ m-1; p = 0.0280). We also observed a deficit in the arteriolar tissue oxygen gradient (0.03 ± 0.01 mmHg µ m-1 fresh vs. 0.018 ± 0.007 mmHg µ m-1 stored; p = 0.0185). We successfully derived and validated an analytical 2D Krogh cylinder model in an animal model of microhemodynamic oxygen diffusion aberration secondary to storage lesions.


Mesocricetus , Oxygen , Animals , Oxygen/metabolism , Cricetinae , Microvessels/diagnostic imaging , Erythrocytes/metabolism , Models, Cardiovascular , Male , Luminescent Measurements/methods , Diffusion , Intravital Microscopy
12.
Luminescence ; 39(4): e4745, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644416

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Cefazolin , Ferrous Compounds , Imipramine , Luminescent Measurements , Luminol , Venlafaxine Hydrochloride , Cefazolin/analysis , Cefazolin/chemistry , Venlafaxine Hydrochloride/analysis , Venlafaxine Hydrochloride/chemistry , Imipramine/analysis , Imipramine/chemistry , Luminescent Measurements/methods , Luminol/chemistry , Nanostructures/chemistry , Luminescence
13.
Anal Chim Acta ; 1304: 342553, 2024 May 22.
Article En | MEDLINE | ID: mdl-38637054

BACKGROUND: The human immunodeficiency virus (HIV) remains a major worldwide health problem. Nowadays, many methods have been developed for quantitative detecting human immunodeficiency virus DNA (HIV-DNA), such as fluorescence and colorimetry. However, these methods still have the disadvantages of being expensive and requiring professional technicians. Early diagnosis of pathogens is increasingly dependent on portable instruments and simple point-of-care testing (POCT). Therefore, it is meaningful and necessary to develop portable and cheap methods for detecting disease markers. RESULTS: In this work, a label-free chemiluminescence (CL) method was developed for detecting HIV-DNA via a handheld luminometer. To achieve label-free target detection, the CL catalyst, G-triplex-hemin DNAzyme (G3-hemin DNAzyme), was in-situ assembled in the presence of HIV-DNA. For improving sensitivity, HIV-DNA induced the cyclic strand displacement reaction (SDR), which can form three G3-hemin DNAzymes in one cycle. So, the chemiluminescence reaction between luminol and H2O2 was highly effectively catalyzed, and the CL intensity was linearly related with the concentration of HIV-DNA in the range of 0.05-10 nM with a detection limit of 29.0 pM. Due to the high specificity of hairpin DNA, single-base mismatch can be discriminated, which ensured the specific detection of HIV-DNA. SIGNIFICANCE: In-situ formation of G3-hemin DNAzyme led to label-free and selective detection without complex synthesis and functionalization. Therefore, it offers a cheap, selective, sensitive and portable method for detecting disease-related genes, which is promising for POCT of clinical diagnosis in resource-limited settings.


Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , HIV Infections , Humans , DNA, Catalytic/metabolism , Hemin , Hydrogen Peroxide , Luminescent Measurements/methods , DNA/genetics , HIV Infections/diagnosis , Biosensing Techniques/methods , Limit of Detection
14.
Anal Chim Acta ; 1304: 342561, 2024 May 22.
Article En | MEDLINE | ID: mdl-38637057

Size selectivity is crucial in highly accurate preparation of biosensors. Herein, we described an innovative electrochemiluminescence (ECL) sensing platform based on the confined DNA tetrahedral molecular sieve (DTMS) for size-selective recognition of nucleic acids and small biological molecule. Firstly, DNA template (T) was encapsulated into the inner cavity of DNA tetrahedral scaffold (DTS) and hybridized with quencher (Fc) labeled probe DNA to prepare DTMS, accordingly inducing Ru(bpy)32+ and Fc closely proximate, resulting the sensor in a "signal-off" state. Afterwards, target molecules entered the cavity of DTMS to realize the size-selective molecular recognition while prohibiting large molecules outside of the DTMS, resulting the sensor in a "signal-on" state due to the release of Fc. The rigid framework structure of DTS and the anchor of DNA probe inside the DTS effectively avoided the nuclease degradation of DNA probe, and nonspecific protein adsorption, making the sensor possess potential application prospect for size-selective molecular recognition in diagnostic analysis with high accuracy and specificity.


Biosensing Techniques , Luminescent Measurements , Luminescent Measurements/methods , Photometry , Biosensing Techniques/methods , DNA , DNA Probes , Electrochemical Techniques/methods
15.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38593715

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Biosensing Techniques , Luminol , Zinc , Piwi-Interacting RNA , Luminescent Measurements/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Metals
16.
Anal Chem ; 96(15): 5852-5859, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38556977

A multicolor electrochemiluminescence (ECL) biosensor based on a closed bipolar electrode (BPE) array was proposed for the rapid and intuitive analysis of three prostate cancer staging indicators. First, [Irpic-OMe], [Ir(ppy)2(acac)], and [Ru(bpy)3]2+ were applied as blue, green, and red ECL emitters, respectively, whose mixed ECL emission colors covered the whole visible region by varying the applied voltages. Afterward, we designed a simple Mg2+-dependent DNAzyme (MNAzyme)-driven tripedal DNA walker (TD walker) to release three output DNAs. Immediately after, three output DNAs were added to the cathodic reservoirs of the BPE for incubation. After that, we found that the emission colors from the anode of the BPE changed as a driving voltage of 8.0 V was applied, mainly due to changes in the interfacial potential and faradaic currents at the two poles of the BPE. Via optimization of the experimental parameters, cutoff values of such three indicators at different clinical stages could be identified instantly with the naked eye, and standard precision swatches with multiple indicators could be prepared. Finally, in order to precisely determine the prostate cancer stage, the multicolor ECL device was used for clinical analysis, and the resulting images were then compared with standard swatches, laying the way for accurate prostate cancer therapy.


Biosensing Techniques , Prostatic Neoplasms , Male , Humans , Luminescent Measurements/methods , Photometry , Prostatic Neoplasms/diagnosis , Prostate-Specific Antigen , DNA , Biosensing Techniques/methods , Electrodes , Electrochemical Techniques/methods
17.
Methods Mol Biol ; 2797: 253-260, 2024.
Article En | MEDLINE | ID: mdl-38570465

Bioluminescence resonance energy transfer (BRET) is a valuable technique for studying protein-protein interactions (PPIs) within live cells (Pfleger and Eidne, Nat Methods 3:165-174, 2006). Among the various BRET methodologies, a recent addition called NanoBRET has emerged, leveraging advancements in donor and acceptor technologies (Machleidt and Woodroofe, ACS Chem Biol 10:1797-1804, 2015). In this study, we present a developed methodology designed to measure PPIs involving the RAS protein family and their effectors and interactors at the plasma membrane. By utilizing the NanoLuc and HaloTag BRET pair, we provide evidence of a saturable interaction between KRAS4b-G12D and full-length RAF1. Conversely, the RAF1 R89L mutant, known to impede RAF1 binding to active RAS, exhibits nonspecific interactions. The assay exhibits remarkable signal-to-background ratios and is highly suitable for investigating the interactions of RAS with effectors, as well as for high-throughput screening assays.


Bioluminescence Resonance Energy Transfer Techniques , High-Throughput Screening Assays , Bioluminescence Resonance Energy Transfer Techniques/methods , Energy Transfer , Luminescent Measurements/methods
18.
Sci Rep ; 14(1): 9710, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678103

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Dependovirus , Fibroins , Genetic Vectors , Luminescent Measurements , Mice, Inbred C57BL , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Dependovirus/genetics , Humans , Mice , Luminescent Measurements/methods , Genetic Vectors/genetics , Fibroins/metabolism , Central Nervous System/metabolism , Male , Luciferases/metabolism , Luciferases/genetics
19.
Anal Chem ; 96(17): 6652-6658, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38630909

A low-triggering potential and a narrow-potential window are anticipated to decrease the electrochemical interference and cross talk of electrochemiluminescence (ECL). Herein, by exploiting the low oxidative potential (0.82 V vs Ag/AgCl) of dihydrolipoic acid-capped sliver nanoclusters (DHLA-AgNCs), a coreactant ECL system of DHLA-AgNCs/hydrazine (N2H4) is proposed to achieve efficient and oxidative-reduction ECL with a low-triggering potential of 0.82 V (vs Ag/AgCl) and a narrow-potential window of 0.22 V. The low-triggering-potential and narrow-potential-window nature of ECL can be primarily preserved upon labeling DHLA-AgNCs to probe DNA and immobilizing DHLA-AgNCs onto the Au surface via sandwiched hybridization, which eventually enables a selective ECL strategy for the gene assay at +0.82 V. This gene assay strategy can sensitively determine the gene of human papillomavirus from 10 to 1000 pM with a low limit of detection of 5 pM (S/N = 3) and would open a way to improve the applied ECL bioassay.


Electrochemical Techniques , Luminescent Measurements , Metal Nanoparticles , Silver , Thioctic Acid/analogs & derivatives , Silver/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Luminescent Measurements/methods , Humans , Thioctic Acid/chemistry , Biosensing Techniques/methods , DNA, Viral/analysis , DNA, Viral/genetics , Limit of Detection
20.
J Clin Lab Anal ; 38(8): e25033, 2024 Apr.
Article En | MEDLINE | ID: mdl-38563457

BACKGROUND: Detection of IgG subclasses (IgGSc) is vital for the diagnosis and management of disease, especially IgG4-related diseases (IgG4-RD). This study aimed to evaluate the performances of the chemiluminescent immunoassay (CLIA) for detecting IgGSc and diagnosing IgG4-RD by IgGSc. METHODS: A total of 40 individuals with IgG4-RD, 40 with primary Sjogren's syndrome (pSS), and 40 healthy controls (HCs) were enrolled. Serum samples were collected for the simultaneous detection of IgG1, IgG2, IgG3, and IgG4 by the Siemens immunonephelometric assay and the CLIA. The correlation analysis was performed, and diagnostic value was analyzed by the receiver operating characteristic (ROC) curve. RESULTS: Patients with IgG4-RD had higher IgG4 (p < 0.001) and lower IgG1 (p < 0.001) than those with pSS, and HC. The results by the Siemens immunonephelometric assay and the CLIA showed a strong correlation in detecting IgG1, IgG2, IgG3, and IgG4 (r = 0.937, r = 0.847, r = 0.871, r = 0.990, all p < 0.001, respectively). The sum of IgG1, IgG2, IgG3, and IgG4 using two assays strongly correlated with total IgG by the IMMAGE 800 (r = 0.866, r = 0.811, both p < 0.001, respectively). For discriminating IgG4-RD from pSS and HC, no significant differences were observed in CLIA IgG4 and Siemens immunonephelometric assay IgG4 (z = 0.138, p = 0.891), which provided the area under the curves (AUCs) of 0.951 (p < 0.001) and 0.950 (p < 0.001), respectively. The AUCs of CLIA IgG1 and Siemens immunonephelometric assay IgG1 in distinguishing pSS from IgG4-RD and HC were 0.761 (p < 0.001) and 0.765 (p < 0.001), respectively, with no significant differences (z = 0.228, p = 0.820). CONCLUSIONS: The CLIA and the Siemens immunonephelometric assay appeared to have good consistency with comparable diagnostic value in detecting IgGSc, especially IgG4, and IgG1 that can accurately identify IgG4-RD or pSS in clinical practice.


Immunoglobulin G , Luminescent Measurements , Humans , Immunoglobulin G/blood , Female , Male , Middle Aged , Immunoassay/methods , Luminescent Measurements/methods , Adult , ROC Curve , Nephelometry and Turbidimetry/methods , Case-Control Studies , China , Aged , Sjogren's Syndrome/blood , Sjogren's Syndrome/diagnosis , Asian People , Immunoglobulin G4-Related Disease/blood , Immunoglobulin G4-Related Disease/diagnosis , East Asian People
...